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Filamentation Regulatory Pathways Control

Adhesion-Dependent Surface Responses in Yeast
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ABSTRACT Signaling pathways can regulate biological responses by the transcriptional regulation of target genes. In yeast, multiple
signaling pathways control filamentous growth, a morphogenetic response that occurs in many species including fungal pathogens.
Here, we examine the role of signaling pathways that control filamentous growth in regulating adhesion-dependent surface responses,
including mat formation and colony patterning. Expression profiling and mutant phenotype analysis showed that the major pathways
that regulate filamentous growth [furgal MAPK (fMAPK), RAS, retrograde (RTG), RIM101, RPD3, ELP, SNF1, and PHO85] also
regulated mat formation and colony patterning. The chromatin remodeling complex, SAGA, also regulated these responses. We also
show that the RAS and RTG pathways coregulated a common set of target genes, and that SAGA regulated target genes known to be
controlled by the fMAPK, RAS, and RTG pathways. Analysis of surface growth-specific targets identified genes that respond to low
oxygen, high temperature, and desiccation stresses. We also explore the question of why cells make adhesive contacts in colonies. Cell
adhesion contacts mediated by the coregulated target; and adhesion molecule, Flo11p, deterred entry into colonies by macroscopic
predators and impacted colony temperature regulation. The identification of new regulators (e.g., SAGA), and targets of surface
growth; in yeast may provide insights into fungal pathogenesis in settings where surface growth and adhesion contributes to virulence.

KEYWORDS MAPK pathways; signaling networks; expression profiling; fungal pathogenesis; microbial predator—prey relationships; pseudohyphal
growth; invasive growth; biofilm; mat; complex colony; temperature control

UNGAL microorganisms exhibit a range of nutrient-related
responses. Under certain conditions, fungal cells can dif-
@2 ferentiate into filamentous or hyphal cells that can expand
Bl across, and/or penetrate into, new environments (Soll and
@ Daniels 2016). Many fungal species can also grow in commu-

nities of biofilms or mats, which are composed of intercon-
nected cells that attach to each other and to surfaces. One
property of mats is the formation of highly organized patterns
that result from adhesive contacts between cells. In patho-
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gens, filamentous growth (Lo et al. 1997) and biofilm forma-
tion (Desai et al. 2014) are critical determinants of virulence.
For example, cells can adhere to medical devices and grow in
dense mats that are resistant to antifungal medicines
(Chandra et al. 2001; Sudbery et al. 2004; Kumamoto
2005; Ramage et al. 2005; Nett and Andes 2015).

The budding yeast Saccharomyces cerevisiae is a unicellular [
fungal microbe, and a convenient model for studying nutrient-
regulated foraging responses like filamentous growth and mat
formation. These responses are best studied in “wild” strain
backgrounds (such as 3.1278b) as the responses have been lost
in certain laboratory strains due to genetic manipulation (Liu
et al. 1996; Dowell et al. 2010; Chin et al. 2012). During fila-
mentous growth, yeast cells differentiate into elongated and
polarized filaments that remain connected in pseudohyphae
(Gimeno et al. 1992; Cullen and Sprague 2012).

At least 600 genes have been identified by genetic screens
(Lorenz and Heitman 1998; Palecek et al. 2000) and genome-wide
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Figure 1 Functionally intercon-
nected signaling pathways regu-
late mat expansion and colony
pattern formation over time. (A)
Circles represent signaling path-
ways or regulatory complexes
Center that control filamentous growth.
Arrows refer to target genes cor-
egulated by pathways, as adap-
ted from Chavel et al. (2014).
Cyan arrows refer to functional
connections identified in this
study. The dashed blue box marks
the part of the network on which
the study is focused. (B) Time-
course experiment of colony pat-
tern formation in wild-type cells
and the indicated mutants. Col-
ony expansion was examined
over an 8-day time period (Videos
S1-S7). In the left panels, colo-
nies at the 8-day time period are
shown. On the right are kymo-
graphs that show colony expan-
sion over time. The yellow lines
in the left panels refer to the re-
gion selected for kymograph
analysis. The panels on the right
show colony patterns that devel-
oped over time in the region se-
lected by the yellow line, where
the bottom of the figure repre-
sents the colony center and the
top represents the colony perim-
eter (edge). Arrows mark features
that are characteristic of ruffle
formation, which is quantitated
in (C). (C) Bar graph showing the
average number of ruffles in wild-
type and the indicated mutant

1 2 3 4 65 6 7 8

colonies at t = 1 day (white), 2 days (gray), and 3 days (black). Error bars represent SD among nine radii from three biological replicates.
* P < 0.05 between the mutant and wild-type for the same time point.

studies (Jin et al. 2008; Xu et al. 2010; Ryan et al. 2012) that play
some role in filamentous growth. A subset of these genes encode
signaling pathway components that include at least four major
nutrient-sensing pathways [fangal MAPK (fMAPK), RAS, TOR
(target of rapamycin), and SNF1], as well as pathways that regu-
late the response to pH (RIM101), phosphate utilization (PHOS85),
and mitochondrial stress [the retrograde mitochondria-to-nucleus
(RTG) pathway]. In addition, proteins that control the epigenetic
modification of histones to alter gene expression have also been
implicated in the regulation of filamentous growth (Rpd3p).
Many of the pathways that regulate filamentous growth are
functionally connected through their ability to coregulate
common target genes (Figure 1A). In some cases, this occurs
at the level of transcription. In a pioneering study, it was
shown that many of the transcription factors that control
filamentous growth control each other’'s expression
(Borneman et al. 2006). Transcription factors can also con-
verge at common promoter elements. One example is the

2 J. Chow et al.

gene encoding the major cell adhesion molecule in yeast,
Flollp (Kraushaar et al. 2015; Chan et al. 2016). The
FLO11 gene contains one of the largest and most highly reg-
ulated promoters in the yeast genome, and functions as a
“hub? where multiple transcription factors and chromatin
remodeling enzymes bind (Robertson and Fink 1998; Rupp
et al. 1999; Palecek et al. 2000; Pan and Heitman 2000;
Kuchin et al. 2002; van Dyk et al. 2005; Barrales et al.
2008). Signaling pathways that control filamentous growth
can also regulate each other’s activity. The classic example
comes from the discovery that the RAS pathway can regulate
the activity of the fMAPK pathway (Mosch et al. 1996). It is
now clear that many pathways regulate the activity of the
fMAPK pathway (Chavel et al. 2010, 2014). One way this
may occur is through the protein kinases of the major regu-
latory pathways, which can regulate each other’s localization
and activity (Bharucha et al. 2008).
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Yeast can also undergo mat formation (Reynolds and Fink
2001; Bojsen et al. 2012), where colonies expand radially
across surfaces and form ruffled patterns (Granek and Mag-
wene 2010; Granek et al. 2011; Tam et al. 2018). Mats form
wheel-spoke patterns in low-percentage agar media [0.3%
agar (Reynolds and Fink 2001)], and wrinkled or ruffled
colonies on high-percentage agar media [1-4% (Granek
and Magwene 2010; Karunanithi et al. 2012)]. Mat expan-
sion and patterning require contacts between cells that are
also mediated by Flo11p. Regulators of mat formation have
been identified by direct approaches (Reynolds 2006; Sarode
et al. 2011; Vachova et al. 2011), genome-wide deletion
screens (Ryan et al. 2012; Voordeckers et al. 2012; Scherz
etal. 2014), overexpression screens (Cromie et al. 2017), and
comparative expression profiling (Traven et al. 2012;
Marsikové et al. 2017). Many of the molecular pathways that
control mat formation regulate FLO11 expression. In addi-
tion, several regulators of mat formation, like the cell wall
integrity sensor Wsclp (Sarode et al. 2014) and vacuolar
protein-sorting genes (Sarode et al. 2011), appear to regulate
mat formation by mechanisms that do not involve Flo11p.
Despite the identification of many proteins and pathways
that regulate mat formation, the benefits that cells derive
from forming these complex patterns remain unclear. Fur-
thermore, the stresses encountered during colonial surface
growth remain relatively unexplored.

As seen in other fungi, filamentous growth and mat for-
mation are related responses in yeast. Both responses require
Flol1p (Lo and Dranginis 1998; Reynolds and Fink 2001),
and a corresponding set of regulatory proteins and pathways
that control FLO11 expression (Ryan et al. 2012). These in-
clude the TOR (Cutler et al. 2001; Bojsen et al. 2016),
Rim101 (Li and Mitchell 1997; Sarode et al. 2011;
Voordeckers et al. 2012), fMAPK (Roberts and Fink 1994;
Reynolds and Fink 2001; Granek and Magwene 2010), and
RAS pathways-(Gimeno et al. 1992; Granek and Magwene
2010; Zara et al. 2011; Ryan et al. 2012; Bojsen et al. 2016).
The tRNA modification complex elongator (ELP) regulates all
three responses (Abdullah and Cullen 2009). It has also been
shown that under nutrient-limiting conditions, mats are com-
posed of filamentous cells (Karunanithi et al. 2012). Given
the abovementioned connections between filamentous
growth and mat formation, we sought to further define
how the network of signaling pathways that control filamen-
tous growth might regulate adhesion-dependent surface
growth.

To learn more about the regulation of surface growth in
yeast, adhesion-dependent surface responses were examined
from several perspectives. In one set of experiments, we de-
veloped a method for recording colony pattern formation over
time by kymograph analysis, which allowed us to confirm that
the major signaling pathways that control filamentous growth
also regulate mat formation. A new regulator of filamentous
growth, the chromatin remodeling complex SAGA, was also
uncovered. Comparative expression profiling identified a
large number of target genes as well as new regulatory

connections between pathways. By seeking to understand
why cells form adhesive connections during surface growth,
we identified a role for Flo11p in protection from macroscopic
predators. We also showed that colony ruffling aids in tem-
perature regulation. Our findings broaden the role of fila-
mentation regulatory pathways to include the regulation of
adhesion-dependent surface responses. Our findings may be
relevant to studies of fungal pathogens that must tolerate
growth on surfaces to become virulent.

Materials and Methods
Media and growth conditions

Yeast strains were grown and manipulated by standard meth-
ods (Sambrook et al. 1989; Rose et al. 1990). For most ex-
periments, colonies were grown on standard ¥PP (2%) or
YEP-galactose (Gal) semisolid agar media (Cullen 2015a).
Some experiments were performed on low-agar (0.3%) me-
dia. Glutamate sensitivity experiments used synthetic agar
(dextrose, 2%; yeast nitrogen base, 6.7 g/liter; uracil,
20 mg/liter; His, 20 mg/liter; Leu, 120 mg/liter; adenine,
20 mg/liter; Lys, 60 mg/liter; Arg, 20 mg/liter; Trp,
20 mg/liter; Tyr, 30 mg/liter; Thr, 200 mg/liter; Met,
20 mg/liter; and Phe, 50 mg/liter), minimal agar (dextrose,
2%; yeast nitrogen base, 6.7 g/liter; and uracil, 20 mg/liter),
and minimal + Glu (dextrose, 2%; yeast nitrogen base, 6.7 g/
liter; uracil, 20 mg/liter; and Glu 20 mg/liter) media. To
generate low-oxygen (5-15% oxygen) and anaerobic condi-
tions, agar plates were incubated in GasPAK EZ Campy Pouch
System (BD 260685; Becton, Dickinson and Company, Frank-
lin Lakes, NJ) or BD GasPAK EZ Anaerobe Pouch System (BD
260683; Becton, Dickinson and Company) bags. To maintain
consistent moisture levels, plates were poured and left
unwrapped for 3 days at 22° to allow the evaporation of
excess moisture. To generate media with reduced moisture
levels, ¥PP plates were left unwrapped for 10 days at 22°.

Strains and genetic manipulations

Yeast strains are listed in Table 1. Gene deletions were con-
structed using auxotrophic markers amplified by PCR and
introduced into yeast by lithium acetate transformation by
standard methods as described (Gietz and Schiest 2007). To
generate the spt8A mutant, homologous recombination at
the SPT8 locus was performed using the pKIURA3
(PC5225) cassette as a template. For some experiments,
yeast strains were used from an ordered knockout collection
(Ryan et al. 2012). Caenorhabditis elegans strains used in this
study include N2 Bristol wild-type and KP4 glr-1(n2461)
(Kaplan and Horvitz 1993). Strains were maintained at 20°
under standard conditions on nematode growth media
(NGM) agar plates seeded with OP50 Escherichia coli bacteria
(Brenner 1974).
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Table 1 Yeast strains used in the study

Strain? Description Reference
PJ69- MATa trpl-901 leu2-3,112 ura3-52 his3-200 ga14A gal80A LYS2::GALI-HIS3 GAL2-ADE2  James et al. (1996)
4Ab met2::GAL7-lacZ
PC313 MATa ura3-52 Liu et al. (1993)
PC538 MATa ura3-52 ste4 FUS1-lacZ FUST-HIS3 Cullen et al. (2004)
PC549 MATa ura3-52 ste4 FUST-lacZ FUST-HIS3 ste20::URA3 Cullen and Sprague
(2000)
PC555 MATa ura3-52 ste4 FUST-lacZ FUST-HIS3 hsl7::URA3 Cullen and Sprague
(2000)
PC562 MATa ura3-52 ste4 FUST-lacZ FUS1-HIS3 ras2::URA3 Cullen and Sprague
(2002)
PC611 MATa ura3-52 sted4 FUST1-lacZ FUST-HIS3 ste11::URA3 Cullen and Sprague
(2002)
PC999 MATa ura3-52 ste4 FUST-lacZ FUST-HIS3 MSB2-HA Chavel et al. (2010)
PC1029 MATa ura3-52 ste4 FUST-lacZ FUS1-HIS3 flo11::KanMX6 Karunanithi et al.
(2010)
PC1079 MATa ura3-52 ste4 FUST-lacZ FUST-HIS3 ste12::URA3 Karunanithi et al.
(2010)
PC2523 MATa ura3-52 ste4 FUST-lacZ -::NAT FUS1-HIS3 flo8::HYG Chavel et al. (2010)
PC2712 MATa ura3-52 ste4 FUST-lacZ FUST-HIS3 GAL-FLO11::KanMX6 Karunanithi et al.
(2010)
PC3030 MATa ura3-52 ste4 FUST-lacZ FUST-HIS3 MSB2-HA sin3::NAT Chavel et al. (2010)
PC3039 MATa ura3-52 ste4 FUST-lacZ FUS1-HIS3 MSB2-HA dig1::NAT Chavel et al. (2010)
PC3431 MATa ura3-52 ste4 FUST-lacZ -::NAT FUST-HIS3 MSB2-HA sfl1::KIURA3 Chavel et al. (2010)
PC3642 MATa ste4 FUST-lacZ FUS1-HIS3 ura3-52 MSB2-HA rtg3::NAT Chavel et al. (2010)
PC3652 MATa sted FUST-lacZ FUST-HIS3 ura3-52 MSB2-HA rtg2::NAT Chavel et al. (2010)
PC3695 MATa ste4 FUST-lacZ FUST-HIS3 ura3-52 MSB2-HA rtg1::NAT Chavel et al. (2014)
PC4005 MATa ste4 FUST-lacZ FUST-HIS3 ura3-52 gcn5::KIURA3 This study
PC3688 MATa ste4 FUST-lacZ FUST-HIS3 ura3-52 opil::NAT Chavel et al. (2010)
PC4008 MATa ura3-52 sted FUST-lacZ FUST-HIS3 spt8::KIURA3 This study
PC5090 MATa ura3-52 ste4 FUST-lacZ FUST-HIS3 ntel::NAT Chavel et al. (2014)
PC5119 MATa ura3-52 sted FUST-lacZ FUST-HIS3 pho80::NAT This study
PC6733 MATa ura3-52 ste4 FUST-lacZ FUST-HIS3 ura3-52::pTEF2-mCherry URA3 his5::NAT mCherry::- Chow et al. (2019)
GFPy-HIS
PC6016 MATa can1A::Ste2pr-spHIS5 lyp1A::Ste3pr-LEU2 his3::hisG leu2A0 ura3A0 Ryan et al. (2012)
CB13A9¢ MATa can1A::Ste2pr-spHIS5 lyp1A::Ste3pr-LEU2 his3::hisG leu2A0 ura3A0 danTA Ryan et al. (2012)
CB52G2 MATa can1A::Ste2pr-spHIS5 lyp1A::Ste3pr-LEU2 his3::hisG leu2A0 ura3A0 sip18A Ryan et al. (2012)
CB53F12 MATa can1A::Ste2pr-spHIS5 lyp1A::Ste3pr-LEU2 his3::hisG leu2A0 ura3A0 sno4A Ryan et al. (2012)
CB60OE1 MATa can1A::Ste2pr-spHIS5 lyp1A::Ste3pr-LEU2 his3::hisG leu2A0 ura3A0 grelA Ryan et al. (2012)
CB29E8 MATa can1A::Ste2pr-spHIS5 lyp1A::Ste3pr-LEU2 his3::hisG leu2A0 ura3A0 hsp26A Ryan et al. (2012)

@ Unless indicated, strains are derived from the %1278b strain background.

b Strain from M. Johnston's laboratory.

©Strains from an ordered deletion collection labeled with “CB* followed by the plate number and location.

Assays for mat formation and filamentous growth

Assays for mat formation were performed as described
(Reynolds and Fink 2001; Karunanithi et al. 2012). The
plate-washing assay was performed as described (Cullen
2015b).

Microscopy

Mats were examined by bright-field microscopy using an
Axioplan 2 fluorescent microscope (Zeiss [Carl Zeiss], Thorn-
wood, NY) with 5%, 10X, 20X, 40X, and 100X PLAN-APO-
CHROMAT 100X/1.4 (oil) (N.A. 0.17) objectives. Digital
images were obtained with an Axiocam MRm camera (Zeiss).
Axiovision 4.4 software (Zeiss) was used for image acquisi-
tion. Digital images were imported into ImageJ (https://
imagej.nih.gov/ij/) in 8-bit format.

4 J. Chow et al.

Comparative RNA sequencing analysis

To compare the transcriptional response of wild-type cells
(PC538) and the ste]12A (PC1079), diglA (PC3039), rtg3A
(PC3642), spt8A (PC4008), and ras2A (PC562) mutants,
cells were concentrated (OD Aggg = 20) and spotted in
10-pl aliquots onto YEP-Gal (2% agar) for 24 hr. Cells were
spotted as six colonies per plate, equidistant to each other
and the plate center. All six colonies were harvested for each
trial and three separate trials were compared for each strain.
The entire colony surface was scraped into 500 pl of distilled
water, harvested by centrifugation, washed, and stored
at —80°% RNA was harvested by hot-acid phenol-chloroform
extraction as described (Adhikari and Cullen 2014). Samples
were further purified using a QIAGEN RNeasy Mini Kit (cat-
alog number 74104; QIAGEN, Valencia, CA). RNA concen-
tration and purity was measured via NanoDrop (NanoDrop
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2000C; Thermo Fisher Scientific, Waltham, MA). RNA stabil-
ity was determined by running the sample on an agarose gel.

RNA sequencing (RNA-seq) was performed as described
previously (Adhikari and Cullen 2014) by sequencing RNA
prepared from three separate cultures. RNA-seq libraries
were prepared from total RNA using the TruSeq RNA Sample
Prep Kit (Illumina, San Diego, CA). Library size distributions
were validated using an Agilent 2200 TapeStation (Agilent
Technologies, Santa Clara, CA). Additional library quality
control, blending of pooled indexed libraries, and cluster op-
timization was performed using Invitrogen’s Qubit 2.0 Fluo-
rometer (Invitrogen, Carlsbad, CA). RNA-seq libraries were
pooled (21-plex) and clustered onto a flow cell lane using an
Mlumina cBot. Sequencing was performed using an Illumina
HiSeq 2500 in Rapid Mode employing a paired-end, 50-base
read length (PE50) sequencing strategy.

Image analysis and base calling were performed using
Mlumina’s Real Time Analysis v1.18 software, followed by
“demultiplexing” of indexed reads and generation of FASTQ
files, using Illumina’s bcl2fastq Conversion Software v1.8.2
(http://support.illumina.com/downloads/
bcl2fastq conversion software 184.html). For analysis of
the RNA-seq data, reads of low quality were filtered out prior
to alignment to the reference genome (S. cerevisiae assembly
R64-1-1, Ensembl release 75) using TopHat v2.0.9 (Trapnell
et al. 2009). Counts were generated from TopHat alignments
for each gene using the Python package HTSeq v0.6.1
(Anders et al. 2015). Genes with low counts across all sam-
ples were removed.

For comparisons of mutant to wild-type colony samples,
differentially expressed genes were identified using the Bio-
conductor package DESeq2 (Love et al. 2014) with the
apeglm package to estimate t-prior shrinkage (Zhu et al.

6 2018). We employed the IHW package to weight hypotheses

and optimize power (Ignatiadis et al. 2016). Differential ex-
pression was defined as |log, (ratio) | = 0.585 (= 1.5 fold)
with P < 0.01. Genes were categorized as “upregulated?
[logFC (fold change) > 0.585, P-value < 0.01], “down-reg-
ulated? (logFC < —0.585, P-value < 0.01), or “insignificant®
(logFC < —0.585 or logFC > 0.585, P-value > 0.01). Differ-
entially expressed pathway-specific genes were visualized in
principal component analysis (PCA), volcano plot, and Venn
diagram figures using ggplot2. Pathway-specific gene expres-
sion was visualized using the Kyoto Encyclopedia of Genes
and Genomes (Kanehisa and Goto 2000), and the Bioconduc-
tor package pathview (Luo and Brouwer 2013). Classification
of targets was based on gene ontology (GO) terms and de-
scriptions in the Saccharomyces Genome Database (http://
www.yeastgenome.org). For all other comparisons, edgeR
v3.18.1 (Robinson et al. 2010) was used. A false discovery
rate (FDR) method was employed to correct for multiple
testing (Reiner et al. 2003). Differential expression was de-
fined as |log, (ratio) | = 0.585 (= 1.5 fold) with P-value <
0.01.

GO term analysis

GO term analysis (Ashburner et al. 2000) was performed
using the GO enRIchment analysis and visuaLizAtion tool
(GOrilla) (Eden et al. 2007, 2009) using the two unranked
lists mode. The Gorilla database had been last updated Jan-
uary 12, 2019. The background list was all of the ORFs iden-
tified during the analysis. The target list for genes regulated
by all five regulators was identified as genes whose |log,-
FC| > 0.585 and P-value < 0.01 in all mutant sets. The target
list for genes regulated by both RAS and RTG was identified
as genes |log,FC| > 0.585 and P-value < 0.01 in only the
ras2A and rtg3A sets. Enriched GO terms were identified by
having P < 10~ 3 and FDR < 0.05. Values for background and
target sets, and enriched GO terms, are in Supplemental Ma-
terial, Table S2.

Quantitative PCR analysis

Differential gene expression was confirmed by quantitative
(q) real-time PCR analysis as described previously (Chavel
et al. 2014). cDNA libraries from RNA samples were gener-
ated using iScript Reverse Transcriptase Supermix (catalog
number 1708840; Bio-Rad, Hercules, CA). qPCR was per-
formed using iTaq Universal SYBR Green Supermix (catalog
number 1725120; Bio-Rad) on the Bio-Rad CFX384 Real-
Time System. Primers were ordered from Sigma ([Sigma
Chemical], St. Louis, MO) and are listed in Table S3. FCs in
expression were determined by calculating AACt (Livak and
Schmittgen 2001) using ACT1 mRNA as the housekeeping
gene for each sample. RNA was prepared from at least three
samples and the average of at least three biological replicates
was recorded. Statistical significance was determined by the
Student’s t-test.

Time-lapse photography

Cells were grown on YEP-Gal semisolid agar media at 22° for
8 days. Photographs were taken using a Nikon D3000 (Nikon,
Garden City, NY) digital camera at 30-min intervals using
automatic exposure without flash. Graph paper (0.25 cm)
was glued to the plate bottom for scaling and later image
stabilization; these were cropped out in the final images.
Images were imported into ImageJ as an image stack for
image stabilization using Kang Li’s image stabilizer plug-in
(http://www.cs.cmu.edu/~kangli/code/

Image Stabilizer.html). Stabilized image series were saved in
video format. Kymographs were generated using the reslice
tool in ImageJ (https://imagej.nih.gov/ij/).

Ruffles were identified as light bands flanked by dark
bands. The number of ruffles per time point was counted
manually at 1-day intervals for each kymograph. Statistical
analysis was carried out for each time point using an unpaired
Student’s t-test.

Evaluation of phosphorylated Kss1 levels

Samples were harvested at specific distances from the colony
perimeter at t = 0. To determine P-Ksslp levels at the
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growing edge of a colony, the outermost millimeters of rep-
resentative colonies were harvested at 1, 2, 3, and 4 days. To
determine the changes in P-Kss1p levels before and after the
colony ruffles, samples were harvested from regions of the
colony 2 mm from the starting colony edge from representa-
tive colonies before and after ruffling.

Samples were evaluated by SDS-PAGE analysis. Immuno-
blots were performed as described (Cullen 2015a). P-Kss1p
was detected with phospho-p44/42 primary antibodies (cat-
alog number 4370S; Cell Signaling Technology, Danvers,
MA) and anti-rabbit HRP secondary antibodies (catalog num-
ber 111-035-144; Jackson ImmunoResearch, West Grove,
PA). Total Ksslp was detected by anti-Kss1p antibodies
(SC-6775-R; Santa Cruz Biotechnology, Dallas, TX) and with
anti-rabbit HRP secondary antibodies (catalog number 111-
035-144; Jackson ImmunoResearch). Loading control Pgklp
was identified by anti-Pgklp primary antibodies (catalog
number 459250; Invitrogen) and with anti-mouse HRP sec-
ondary antibodies (catalog number 1706516; Bio-Rad).

Effect of S. cerevisiae cell-cell adhesion on pharyngeal
uptake by C. elegans

Wild-type yeast cells expressing GFP (PC6733) were grown in
synthetic or ¥PP liquid media at 30° for 16 hr. Cells were
washed twice in M9 buffer (KH,PO,, 3 g/liter; Na,HPO,,
6 g/liter; NaCl, 5 g/liter; and 1 mM MgSO,). As previously
described (Bois et al. 2013), adult C. elegans were transferred
into suspensions of S. cerevisiae. After 45 min, C. elegans were
removed and mounted onto 2% agarose pads, and immobi-
lized with 10 mM sodium azide. Slides were examined with
an Axioplan 2 fluorescent microscope (Zeiss) at 40X. Indi-
vidual S. cerevisiae cells were counted. Independent repli-
cates were performed on three separate days.

Experiments involving yeast colonies exposed to entry
by C. elegans

Yeast cells were grown in ¥PP liquid media at 30° for 16 hr.
For interactions between C. elegans and S. cerevisiae colonies,
200-pl aliquots of cells were dispensed onto NGM (Wood
1988) agar media and grown as colonies at 22° for 72 hr.
Under this condition, yeast colonies formed Flo11p-depen-
dent patterns. OP50 E. coli (Brenner 1974) were taken from
stock cultures, and 200 pl aliquots were dispensed onto NGM
agar media and grown at 22° for 3 days.

To examine colony penetration, adult and fourth-stage
larva (L4) C. elegans were transferred from stock OP50 plates
to experimental plates around the yeast or E. coli. Mat pene-
tration times were determined by measuring the time from a
worm nose first contacting the colony to the tail fully entering
the mat, up to 100 sec. The number of stalls and reversals was
determined by counting the number of incidents when a
worm’s tail would stop forward movement or reverse. The
percent of time moving forward was determined by recording
the amount of time that a worm was moving forward divided
by the total time required to penetrate a mat. Independent
replicates were performed on at least three separate days.
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To examine the pharyngeal uptake of S. cerevisiae by C.
elegans, wild-type (PC538) and floI11A (PC1029) yeast were
transformed with a plasmid containing GFP-2xPH (PC2560)
[CS189 (Stefan et al. 2005) provided by the Emr laboratory
(Cornell University)]. Cells were grown in ¥PB liquid media
at 30° for 16 hr and 200-pl aliquots were spotted onto NGM
agar media. Colonies were grown at 22° for 3 days. Worms
were transferred directly into colonies and left for 45 min
before mounting and imaging. Independent replicates were
performed on three separate days.

Videq was captured using an AmScope MD35 camera and
AmScope image capture software. The camera was inserted
into the eyepiece of a Zeiss SteREO Discovery V8. Dot plots for
worm entry times were generated in ggplot2 (Wickham
2016). Statistical analysis was performed using the Student’s
t-test.

Infrared imaging

Infrared images were taken using FLIR A325sc (FLIR Systems,
Wilsonville, OR) and captured using FLIR ResearchIRMax4
(FLIR Systems), provided by the Sustainable Manufacturing
And Robotic Technology center at the University at Buffalo.
Average and coolest temperatures for each colony were mea-
sured using FLIR ResearchIRMax4 (FLIR Systems).

An insulated housing unit was built to mount the thermal
imaging camera above a stage for agar plates. Yeast cells were
grown in ¥PP liquid media at 30° for 16 hr. Next, 10-pl
aliquots were spotted onto YEP-Gal agar media. Colonies
were grown for 72 hr at 30°. For imaging, plates were trans-
ferred from the incubator to the mount in a photographing
area with an ambient temperature of 22°. Plate lids were
removed to allow imaging. Images were taken immediately
after removing the lid.

Data availability

All strains are available upon request. The Gene Expression
Omnibus (GEO) accession number for raw sequencing data is
GSE115657. A comparison with previously published expres-
sion profiling data sets for cells grown in liquid culture has
been described [GEO accession number GSE61783 (Adhikari
and Cullen 2014)]. Supplemental material available at Fig-
Share: https://doi.org/10.25386/genetics.8066615.

Results

A signaling network regulates adhesion-dependent
surface responses in yeast

Multiple signal transduction pathways regulate filamentous
growth (Figure 1A) (Chavel et al. 2010, 2014). A large num-
ber of genes that control invasive growth, pseudohyphal for-
mation, and mat formation show significant overlap based on
a genome-wide analysis using deletion mutants in the fila-
mentous strain background (Ryan et al. 2012). Thus, we ex-
amined and compared how the signaling network that
regulates filamentous growth impacts adhesion-dependent
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surface responses in yeast. We sought to directly compare key
pathways in the network (MAPK and RAS) to less well-char-
acterized pathways (RTG) and to a newly identified chroma-
tin remodeling complex (SAGA). All of the pathways were
studied in reference to a key target adhesion molecule,
Flo11p.

Some strains (e.g., 21278b) exhibit ruffled colony mor-
phology when grown on surfaces. This phenotype is depen-
dent on cell adhesion contacts mediated by Flo11p (Reynolds
and Fink 2001; Karunanithi et al. 2012). To evaluate colony
pattern formation, we performed a time-course experiment
followed by kymograph analysis, which can reveal changes in
local features over time (Kaksonen et al. 2003). Wild-type
cells were spotted on 2% agar media (YEP-Gal), and ruffle
formation was examined by photographing colonies at
30-min intervals over an 8-day period (Video S1). In a series
of experiments, kymographs were generated along multiple
radii of expanding colonies to measure the extent of ruffle
formation [Figure 1B, wild-type (PC538), yellow line corre-
sponds to one kymograph at right]. Ruffles were identified as
light horizontal bands flanked by dark bands and could be
counted manually by this method (Figure 1B, wild-type,
black arrows). Measuring the banding pattern from separate
sections of the colony allowed us to assess the extent of ruffle
formation over time (Figure 1C, wild-type). As has been pre-
viously demonstrated (Granek and Magwene 2010), colonies
lacking the adhesion molecule Flo11p did not form ruffles
(Video S2), which was also evident by kymograph analysis
[Figure 1, B and C and Figure S1, flo11A (PC1029)]. There-
fore, kymograph analysis permitted the numerical assess-
ment of pattern formation in yeast colonies. In principle,
kymograph analysis may allow quantification of colony pat-
tern formation in other microbialsystems.

Kymograph analysis was next applied to mutants lacking
key components of the major signaling pathways that regulate
filamentous growth. As expected (Roberts and Fink 1994,
Rupp et al. 1999; Reynolds and Fink 2001; Granek and Mag-
wene 2010), the fMAPK pathway was required for colony
ruffling. Specifically, kymograph analysis showed that colo-
nies lacking a negative regulator of the fMAPK pathway,
Diglp (Cook et al. 1996; Tedford et al. 1997; Bardwell
et al. 1998; Olson et al. 2000; Breitkreutz et al. 2003;
Kusari et al. 2004; Chou et al. 2006; van der Felden et al.
2014), formed more ruffles than wild-type after 1 day of
growth [Figure 1, B and C, digIA (PC3039), Figure S1, and
Video S3], though this difference was less apparent over
longer time periods. Conversely, loss of the fMAPK transcrip-
tion factor, Ste12p, led to a defect in colony ruffling at the
examined time points [Figure 1, B and C, steI2A (PC1079),
Figure S1, and Video S4]. The fMAPK pathway was also re-
quired for mat formation on 0.3% agar (Figure S1; stel2A
and diglA; Figure S2 provides examples of other fMAPK reg-
ulators; stel 1A and ste20A). Also as expected (Gimeno et al.
1992; Rupp et al. 1999; Granek and Magwene 2010; Zara
etal. 2011; Ryan et al. 2012), the RAS pathway was required
for colony ruffling [Figure 1, B and C, ras2A (PC562) and

Video S5] and mat formation (Figures S1 and S2). Thus,
kymograph analysis can be used to evaluate the roles of sig-
naling pathways in regulating aspects of mat and colony pat-
tern formation.

We next tested whether other pathways that are known-te
regulate filamentous growth also regulated adhesion-depen-
dent colonial responses. The mitochondria-to-nucleus RTG
pathway regulates invasive growth (Chavel et al. 2010;
Gonzdlez et al. 2017). We alse found that the RTG pathway
was also required for colony ruffling [Figure 1, B and C, rtg3A
(PC3642), Figure S3, and Video S6] and mat formation on
0.3% agar (Figures S1 and S2).

We next tested the role of other proteins that control
filamentous growth. Pho85p regulates filamentous growth
(Chavel et al. 2010) and was also required for mat formation
(Figure S1 and S2). Rpd3p (Chavel et al. 2010; Voordeckers
et al. 2012), lipid regulators Opilp and Ntelp (Chavel et al.
2014), and Snflp (Cullen and Sprague 2000; Voordeckers
et al. 2012) were also required for mat formation (Figures S1
and S2). Based on these results, we conclude that many of the
major signaling pathways that regulate filamentous growth
also regulate mat formation and colony patterning.

We hypothesized that the chromatin remodeling complex
SAGA (Koutelou et al. 2010) might also regulate adhesion-
dependent surface growth. The hypothesis was based on the
fact that a component of SAGA, Gen5p (Georgakopoulos and
Thireos 1992; Sterner and Berger 2000), is required for fila-
mentous growth (Chavel et al. 2014). Moreover, SAGA com-
ponents have previously been shown to control aspects of
colonial patterning (Voordeckers et al. 2012). Spt8p, a SAGA
componer inston et al. 1987), also regulates filamentous
growth (4 G CESOR fitss ation). Kymograph 7
analysis of the spt8A mutant showed a defect in ruffle forma-
tion at 2 and 3 days [Figure 1, B and C, spt8A (PC4008),
Figure S3, and Video S7]. The defect was subtle by kymo-
graph analysis but was-obvious in the time-lapse analysis. The
spt8A mutant was also defective for colony ruffling and mat
pattern formation (Figure S1). Therefore, we include SAGA
as a regulator of filamentous surface responses in yeast (Fig-
ure 1A, cyan).

Expression profiling of colony surface growth identifies
new targets

To explore how filamentation signaling pathways might reg-
ulate surface growth, comparative RNA-seq was performed in
several mutants that disrupt the main pathways that regulate
filamentous growth (dashed blue box in Figure 1A, pathway
diagrams can be found in Figure S4, A-D). RNA was prepared
from wild-type and mutant colonies with the following geno-
types: ste12A (fMAPK), digl1 A (fMAPK), ras2A (RAS), rtg3A
(RTG), and spt8A (SAGA). RNA was prepared from colonies
under conditions that favored pattern formation (YEP-Gal).
Each mutant showed the expected colony patterning. Specif-
ically, the ras2A (PC562), rtg3A (PC3642), ste12A (PC1079),
and spt8A (PC4008) mutants were less ruffled than wild-type
colonies (PC538), and the digl A (PC3039) mutant was more
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ruffled than wild-type colonies (Figure S4E). After sequenc-
ing, PCA of the RNA-seq data showed close clustering of
strain replicates, while strains differentiated into their repli-
cate clusters (Table S1).

Comparative RNA-seq analysis between the wild-type col-
onies and each mutant was performed with the DESeq2
package in R (Love et al. 2014). Differential gene expression
was defined by |log,FC| > 0.585 and P-value < 0.01. By this
method, 1833 genes were differentially expressed in at least
one of the mutants tested (Figure S4F) and represented 29%
of the ORFs in the genome (Lin et al. 2013). The annotated
data set can be found in Table S1. To identify the most dif-
ferentially regulated targets between the mutant and wild-
type colonies, volcano plots showing all differences in gene
expression were generated for each mutant. Individual genes
were distributed by change in expression (x-axis, logoFC) and
significance of change in expression [y-axis, —log;o(P-
value)] (Figure 2A). Many of the genes whose expression is
known to be induced during filamentous growth were un-
covered during the initial analyses (Figure 2A and Table
S1). These included targets of the fMAPK pathway: FLO11
(Rupp et al. 1999) (Figure 2A, diglA and stel2A; Table S1,
diglA and ste12A), YLRO42C (Roberts et al. 2000) (Figure
2A, stel2A; Table S1, digIA and ste12A), CLN1 (Madhani
et al. 1999) (Table S1, digIA and ste12A), PGUI (Madhani
et al. 1999; Roberts et al. 2000) (Figure 2A, diglA and
stel2A; Table S1, diglA and ste12A), SVS1 (Roberts et al.
2000) (Figure 2A, diglA and ste12A; Table S1, digIA and
ste12A), KSS1 (Table S1, digIA and ste12A) (Roberts et al.
2000), and MSB2 (Cullen et al. 2004) (Table S1, diglA and
ste12A). The abovementioned fMAPK pathway targets
YLR042C, PGU1 (Roberts et al. 2000), FLO11 (Rupp et al.
1999) are also Ras2p-dependent (Table S1, ras2A), poten-
tially through its regulation of the fMAPK pathway (Mdsch
etal. 1996, 1999; Chavel et al. 2010). Similarly, targets of the
RTG pathway were identified in the wild-type-rtg3A data set:
CIT2, CIT1, IDHI, IDH2 (Liu and Butow 1999) (Figure 2A,
rtg3A; Table S1, rtg3A), and DLD3 (Liu and Butow 2006)
(Table S1, rtg3A). Genes regulated by SAGA were identified
in the wild-type-spt8A data set [ADHI1, ARG1, BDF2, CTT1,
FBA1, GRE2, PGK1, TDH3, and PHO84 (Basehoar et al. 2004;
Huisinga and Pugh 2004)] (Table S1, spt8A).

Confirmation of other targets by qPCR analysis has been
performed in related studies including: targets of fMAPK

related to the fungal cell wall, OCHI, PRY2, FLOl=mnd
TIP1 (Chow et al. 2018); SUC2 and YLR042C (Ghol— 5 E 5

unpublished-data); and GIC2 (Prabhakar etal; personal com-

[@ munication). Therefore, comparative RNA-seq analysis iden-

tified many ef-the genes expected based on previous or
parallel studies.

One question that-we sought to address was the extent of
target gene overlap among the signaling pathways that reg-
ulate filamentous growth. We found that while most genes
were regulated by one pathway (Figure S4G, 742/1833 or
59%), coregulated targets were seen in almost every combi-
nation of regulators, including targets coregulated by all five
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regulators (Figure S4F). This result also demonstrated that
the SAGA complex coregulated targets with the fMAPK, RAS,
and RTG pathways (Figure S4F), which furthervalidatesitasa
major regulator of filamentous growth (Figure 1A, cyan ar-
rows). Additionally, Spt8p regulated a target of the RIM101
pathway, NRG1 (Chavel et al. 2014) (Figure 1A, cyan arrow),
and a target of lipid biosynthesis, INO1 (Chavel et al. 2014)
(Figure 1A, cyan arrow). SAGA did not coregulate targets of
the PHO85, RPD3(L), or ELP pathways. Taken together, these
data suggest that one function of this network of signaling
pathways is to regulate a large number of genes (the more
nodes in the network, the greater the number of differentially
expressed genes); a second function is to coregulate key tar-
gets to amplify target gene expression.

One possible explanation for the regulatory overlap is cross
feedback among the pathways. To explore this aspect of
signaling network connectivity, we examined whether genes
encoding pathway components were themselves targets of
other pathways that regulate filamentous growth. The RTG
pathway regulated the expression of components of fMAPK
(MSB2), RAS (TPK2), and SAGA (SFG73). fMAPK regulated
genes encoding components of its own pathway (MSB2,
TECI, and KSS1) and the RAS pathway (BCYI). The RAS
pathway regulated one of its own effectors (TPK1) and the
fMAPK pathway (TECI). SAGA regulated the fMAPK path-
way (MSB2 and TEC1) and itself (SUS1) (Figure S5, A and B).
These results support and extend a previous study, which
showed that the activity of the fMAPK is subject to regulation
by other filamentation regulatory pathways (Chavel et al.
2010). Interestingly, not all of the interactions would be
expected to result in positive feedback. For example, the
rtg3A mutant showed a ~1.9-fold increase in TPK2 gene
expression (Table S1), which is a PKA subunit and compo-
nent of the RAS pathway. These data indicate that coregula-
tion of targets may be the result of feedback among the
pathways that regulate filamentous growth.

To identify functionally relevant targets whose expression
was amplified by multiple pathways that regulate filamentous
growth, we focused on genes that were differentially
expressed in all regulatory mutants (Figure 2B and Table
S2, all mutants). GO term analysis (Ashburner et al. 2000)
of the coregulated genes showed significant enrichment in
cell adhesion, cell wall constituents, and fungal cell wall pro-
teins (Table S2, all mutants). One of the targets that was
coregulated by all five regulators, and that was included in
many of the above enriched GO terms, was the gene that
encodes the major cell adhesion molecule Flol1p (Figure
2B and Table S2, all mutants). FLO11 is known to be regu-
lated by a large number of proteins and pathways (Rupp et al.
1999; Barrales et al. 2008). We confirmed that fMAPK, RAS,
RTG, and Spt8p controlled FLO11 expression by qPCR (Fig-
ure 2C). These data fit with the key role that Flo11p plays in
regulating adhesion-dependent responses in yeast. Another
target regulated by all five mutants, which also had the larg-
est net change in regulation, was PGUI1, the gene that en-
codes a secreted pectinase that is also expressed during
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Figure 2 Comparative RNA-seq analysis identifies common and unique targets of signaling pathways that regulate fitarmenteus growth. (A) Volcano
plots showing comparative RNA-seq between the indicated mutant and WT. Dot size is —log(P-value). Volcano plot x-axis is log,(FC); y-axis is —logqo
(P-value). Labeled dots are 10 targets with lowest P-value or five targets with highest Ifold changel. FLO71 has also been labeled on dig7A and ras2A
plots. CIT2 and TIR2 have calculated P-values < 107390 in the rtg3A mutant, as reflected in the break in the y-axis. (B) Heat map showing targets with |
log,(FC)l > 0.585 and P-value < 10~3. (C) Bar graph showing fold change in FLOT7 mRNA levels, normalized to ACTT with WT values set to 1, in the
indicated mutants by gPCR analysis by the AACt quantitation method. The experiment was performed in triplicate and error bars represent the SD
between experiments. * P < 0.05 for all differences compared to WT. (D) Bar graph showing fold change in PGUT mRNA levels. See (C) for details. log,
(FC), log,(Fold Change); gPCR, quantitative PCR; RNA-seq, RNA sequencing; WT, wild-type.
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filamentous growth (Madhani et al. 1999; Cullen 2015a).
This result was confirmed by qPCR analysis (Figure 2D,
Taken together, our results are consistent with the idea that
multiple signaling pathways and protein complexes coordi-
nately regulate target gene expression during colonial sur-
face growth (Figure 2A). One function of the network is to
control the expression of FLO11, a major regulator of adhe-
sion-dependent responses in yeast (Figure 2, B and C).

A regulatory connection between the RAS and
RTG pathways

In an analysis of highly significant changes in expression in the
ras2A and rtg3A sets (P < 10~12) (Figure S6), 41 targets
were in common and 93% of these targets (39/41) showed
the same regulation (both up or down) (Figure S6). For ex-
ample, citrate synthase, CIT3, was among the significant,
differentially expressed genes in both ras2A and rtg3A (Fig-
ure 2A). Other citrate synthases, CIT1 and CIT2, were also
coregulated by both the ras2A and rtg3A mutants (Figure 3A
and Table S1). We confirmed that RAS and RTG coregulated
CIT2 and CIT3 by qPCR analysis (Figure 3, B and C). Because
of the extent of coregulation, especially the coregulation of
all citrate synthase isoforms (Graybill et al. 2007), the full set
of RAS and RTG coregulated targets was examined further.
As expected, the RTG pathway regulated mitochondrial
gene targets (Table S1). Many of the genes were also regu-
lated by the RAS pathway (Table S1; PDH1, YAT1, and YAT2)
(Schmalix and Bandlow 1993; Epstein et al. 2001; Swiegers
et al. 2001). Moreover, several hallmark RTG targets were
also regulated by the RAS pathway (Table S1; CIT1, CITZ2,
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Figure 3 Common and unique tar-
get genes of the RAS and RTG path-
ways. (A) Heat map of targets
coregulated by the RAS and RTG
pathways with the citrate metabolic
process GO term. (B and C) Bar
graph showing fold change in (B)
CIT2 and (C) CIT3 mRNAs in ras2A
and rtg3A relative to WT. See Figure
2C for details. (D) Strains spotted
onto synthetic media, minimal me-
dia, or minimal media with gluta-
mate. Cells were grown for 48 hr.
(E) Heat map of targets coregulated
by RAS and RTG associated with
sporulation. (F and G) Bar graphs
G sSP2 showing fold change in (F) AMA1
and (G) SSP2 mRNAs in ras2A and
rtg3A relative to WT. See Figure 2C
for details. Glu, glutamate; GO,
gene ontology; log,(FC), log,(Fold
Change); WT, wild-type.
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CIT3, ATO2, and ATO3) (Suissa et al. 1984; Kim et al. 1986).
In addition to coregulation of cell wall components (i.e.,
FLO11), GO term analysis identified significant enrichment
of the citrate metabolic process by the overlapping RAS and
RTG targets (Figure 3A and Table S2), and the citric acid
cycle (Figure S7). Because RAS and RTG coregulated genes
that are involved in the citric acid cycle, we hypothesized that
RAS might be required to support that mitochondrial role.
The mitochondria are critical for glutamate biosynthesis (Liu
and Butow 1999; Magasanik and Kaiser 2002) and RTG is
required for growth in medium lacking glutamate [Figure 3D,
rtg3A (Liao and Butow 1993; Small et al. 1995; Chavel et al.
2014)]. More specifically, a loss of citrate synthases results in
glutamate auxotrophy in S. cerevisiae (Kim et al. 1986), so we
hypothesized that a RAS pathway mutant would be sensitive
to limiting glutamate. Like RTG, the RAS pathway was also
required for growth in this condition (Figure 3D, ras2A). The
growth defects of cells lacking an intact RAS or RTG pathway
were bypassed by the addition of glutamate (Figure 3D).
Therefore, the RAS pathway plays a role in this mitochondrial
process.

Similarly, the RAS pathway regulated genes that are re-
quired for sporulation (Table S1) and a subset of these genes
were coregulated by the RTG pathway [Figure 3E, ADY2
(Rabitsch et al. 2001), AMAI (Coluccio et al. 2004), SSP2
(Sarkar et al. 2002), and MUM3 (Engebrecht et al. 1998)].
Several of the genes were confirmed by gPCR analysis (Figure
3, F and G). Therefore, the RAS and RTG pathways coregu-
late functionally related genes and may be more functionally
connected than has been previously thought.
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Nonreciprocal target genes are regulated by opposing
transcriptional regulators of the fMAPK pathway

Stel2p is one of the transcription factors that regulates the
fMAPK pathway (Liu et al. 1993). The transcriptional repres-
sor Diglp inhibits Stel2p-dependent transcription (Cook
et al. 1996; Tedford et al. 1997; Bardwell et al. 1998; Olson
et al. 2000; Breitkreutz et al. 2003; Kusari et al. 2004; Chou
et al. 2006; van der Felden et al. 2014). Although the tran-
scriptional outputs of the pathway can be complex resulting
in nonuniform target gene regulation (Breitkreutz et al.
2003), Ste12p and Diglp were expected to regulate a com-
mon set of targets in a reciprocal manner (Figure 4A). We
unexpectedly found that the pattern of gene regulation by the
two proteins could not be solely explained by reciprocal reg-
ulation. In an analysis of the most significant changes in ex-
pression in the diglA and ste12A sets (P < 10712) (Figure
S8), 20 targets were found to be in common and only 50%
(10/20) were reciprocally regulated (up in digIA and down
in ste12A) (Figure S8). As expected, Stel2p and Diglp

dig1A stel2A
N
3
Q
dig1A stelZA 2
g
S
b |
w
=1
w
loa,(FC) S Figure 4 Common and unique
£-2 »2 genes regulated by Ste12p and

Diglp. (A) Model of the fMAPK
pathway showing Ste12p and
Diglp. (B) Heat map of indicated
targets regulated in the dig7A or
ste12A mutants. (C-F) Bar graphs
showing fold change in target
mRNA levels for (C) ZPS1, (D) VELT,
(E) YDR365W-B, and (F) YARO0O9C.
See Figure 2C for details. TMAPK,
fungal MAPK; log,(FC), log,(Fold
Change); WT, wild-type.

dig1A

dfg 1A

showed reciprocal regulation of a subset of target genes (Fig-
ure S8; FLO11/MUC1, PGU1, YLR0O42C, and BAR1). However,
more genes were independently regulated only by Diglp or
only by Stel12p (Figure S8).

For example, the target with the largest change in expres-
sion identified in the digI1A volcano plot was YOR387C (>
111-fold increase) (Figure 2A and Table S1). Although
YOR387C lacks associated GO terms, a literature search in-
dicated that YOR387C is induced in zinc-limiting conditions
(Higgins et al. 2003; Wu et al. 2008). Although YOR387C and
its paralog VEL1 (Higgins et al. 2003) were significantly reg-
ulated in the dig]A mutant, neither gene was found to be
regulated in the ste12A mutant (Figure 4B and Table S1).
Additionally, only the digI A mutant showed a change in ex-
pression of ZAP1 (Table S1), a major transcription factor in-
duced by limiting zinc (Zhao and Eide 1997). Interestingly,
the ability of cells to take up trace zinc was determined to be
critical for flocculation (Yuan 2000), which is a closely re-
lated response to filamentous growth and mat formation. A
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Figure 5 Different ruffling patterns in colonies correspond to different levels of fMAPK pathway activity. (A) Bright-field microscopy of a wild-type
colony grown in YEPD for 48 and 72 hr. Red arrow indicates same location on a mat at 48 hr when the region is smooth and 72 hr when the region has
become ruffled. Different focal planes of the same colony are shown. (B) Immunoblot analysis using p42/p44 antibodies to detect P-Kss1p levels from
extracts prepared from cells before and after ruffling. Immunoblots were also performed using antibodies to Kss1p and Pgk1p as loading controls. (C)
Immunoblot analysis using p42/p44 antibodies to detect phosphorylated Kss1p at different parts of a colony. Immunoblots were also performed using
antibodies to Kss1p and Pgk1p as loading controls. fMAPK, furgal MAPK; YEPD, yeast extract, peptone, and dextrose.

subset of other upregulated targets in the digl A mutant were
genes induced under low-zinc conditions [Figure 4B, ZPS1
(Lyons et al. 2000)] as well as a zinc transporter [ZRT1 (Zhao
and Eide 1996)]. These genes were not strongly downregulated
in the ste12A mutant. The expression profiles of ZPS1 and VEL1
were confirmed by qPCR analysis (Figure 4, C and D).

Likewise, the ste12A mutant showed downregulation of
some target genes that were not altered in the digl A mutant.
One of the targets identified in the stel2A volcano plot was
the retrotransposon YDR365W-B (Kim et al. 1998). Other
retrotransposons—YDR365W-B, YOL103W-B, YAR009C, and
YDR210C-D (Kim et al. 1998)—were also regulated by
Ste12p but less so by Diglp (Figure 4B). The expression pro-
files of YDR365W-B and YARO09C were confirmed by qPCR
analysis (Figure 4, E and F). Thus, key transcriptional regu-
lators of the fMAPK pathway operate through mechanisms
that do not only involve reciprocal regulation between the
two proteins.

Changes in colony patterning correspond to changes in
MAPK pathway activity

We also examined the development of colony pattern forma-
tion under different conditions and over time. Colonies
showed different ruffling patterns under different conditions.
For example, growth in preferred carbon sources such as
glucose media (¥PP) resulted in colony perimeters that were
smooth compared to a ruffled colony interior (Figure 5A,
adjacent photographs of a colony are shown at different focal
planes on the z-axis). Such differences were not observed in
more uniformly ruffled colonies grown on a nonpreferred
carbon source (YEP-Gal) (Video S1). Over time, the smooth
regions of the colony became ruffled (Figure 5A, red arrow
marks the same location in the colony).

One explanation for differences in colony pattern forma-
tion might be that different parts of the colony are exposed to
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different environments. The fMAPK pathway, which is sensi-
tive to nutrient levels, may induce different responses in
different parts of the colony. To test this possibility, samples
from regions of the colony were collected and examined for
fMAPK activity by phosphorylation of the MAP kinase Kss1p
(Cullen 2015a). Samples collected from smooth colony pe-
rimeters showed low P~Kss1p levels (day 5, smooth). Sam-
ples collected from the same physical location that had
become ruffled (day 6, ruffled) showed high P~Kss1p levels
(Figure 5B). This result indicates that as cells in colonies
consume nutrients and subsequently starve, the fMAPK path-
way is activated to promote ruffle formation. In line with this
possibility, colony interiors showed higher levels of P~Kss1p
compared with colony perimeters (Figure 5C). We note that
in this experiment, the levels of total Kss1p protein were also
lower at colony perimeters. KSS1 is a target of the fMAPK
pathway, and the regulation of total Kss1p may be a way that
fMAPK regulates its activity through positive feedback
(Roberts et al. 2000). Therefore, signaling pathways may
exhibit different activities, and induce target genes to differ-
ent levels, in a manner that is influenced by nutrient levels
(and time) to control adhesion-dependent surface growth.

Genes that respond to oxygen, desiccation, and
temperature stress were induced during colony
surface growth

Growth on surfaces presents unique challenges compared to
the uniform growth in liquid cultures. To further explore the
response to colonial growth on surfaces, expression profiling
data sets were compared between cells grown in liquid
(Adhikari and Cullen 2014) and cells grown on an agar sur-
face (this study). Growth on surfaces caused the differential
expression of 3267 genes when compared to growth in liquid
(Table S1, wild-type liquid-solid, |log,FC| > 0.585 and
FDR < 0.05). This represents ~54% of the yeast genome
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Figure 6 Target genes induced during surface growth correspond to the response to specific stresses. (A) Volcano plot showing the difference in
expression and significance of all targets between growth in liquid media vs. solid media. x-axis is log,(Fold Change); y-axis is —logo(P-value). Labeled
targets are the top 15 induced targets during surface growth. (B) Relative fold change of the indicated gene was determined by gPCR analysis.
Expression normalized to ACTT in the indicated mutants, as determined by gPCR analysis. The experiment was performed in triplicate and error bars
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were spotted on YEPD 2% agar media in normal and low-oxygen conditions. Colonies were grown for the indicated times to compare colonies of
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[6091 genes (Lin et al. 2013)]. Functional classification of the
top 15 induced targets (Figure 6A, >25-fold increase in ex-
pression) during surface growth included genes induced dur-
ing anaerobic stress [DANI1 (Sertil et al. 1997) and TIRI
(Cohen et al. 2001), Figure 6A], desiccation/dehydration
[SIP18 (Miralles and Serrano 1995) and GRE1 (Garay-Arroyo
and Covarrubias 1999), Figure 6A], and elevated tempera-
ture [HSP33 (Wilson et al. 2004) and SNO4 (Samanta and
Liang 2003), Figure 6A]. An expanded list of the top
50 (>15-fold increase in expression) induced targets in-
cluded genes that regulate metal homeostasis, RNA process-
ing, and the metabolism of lipids and nonfermentable carbon
sources, as well as genes of unknown function (Figure S9).

The most differentially induced target during surface
growth was the gene that encodes the anaerobic-responsive
cell wall mannoprotein Danlp (Mrsa et al. 1999) (Figure 6A).
gPCR analysis showed that DANI expression was induced
during surface growth (Figure 6B). Examination of the
danlA mutant from an ordered gene deletion collection
(Ryan et al. 2012) showed a defect in colony ruffling (Figure
S10, dan1A). Thus, Danlp may impact colony patterning in
response to stresses associated with surface growth. In addi-
tion to DAN1, the four members of the Tir family of anaero-
bic-responsive cell wall mannoproteins (Cohen et al. 2001)
also showed transcriptional induction during surface growth
(Figure 6A and Table S1, wild-type liquid-solid), which was
verified in a study on the regulation of the cell wall (Chow
et al. 2018). Therefore, anaerobic-specific changes to the cell
wall also occur during surface growth in yeast.

Because targets that encode anaerobic-responsive proteins
were among the top induced targets during colony surface
growth [DAN1 and the TIR genes (Figure 6A)], the impact of
oxygen in colony ruffling and invasive growth was examined.
S. cerevisiae undergoes aerobic alcohol fermentation by what
is known as the Crabtree effect (Crabtree 1929). In yeast, this
includes the repression of genes involved in aerobic respira-
tion in the presence of glucose during exponential growth
(De Deken 1966). Studies that explore this phenomenon in
yeast have done so in liquid culture (De Deken 1966;
Hagman et al. 2014), but the role of oxygen in regulating
aspects of colonial growth has not been explored. To deter-
mine the role of oxygen on colony pattern formation, wild-
type and digIA colonies grown in normal atmospheric oxy-
gen (20% oxygen) were compared to colonies grown in low
oxygen (5-15% oxygen). Comparing the colonies at similar
sizes (2-day normal oxygen and 6-day low oxygen) showed
that both were less ruffled in low oxygen (Figure 6C). Wild-
type and dig1A colonies showed reduced invasive growth in
low oxygen (Figure 6C). Additionally, wild-type, digIA, and
ste12A colonies grown in limiting oxygen (5-15% oxygen or
0% oxygen) grew more slowly than in normal oxygen (20%
oxygen) (Figure S11). Slower growth was not bypassed with
excess glucose (Figure S11, 8% Glu) as might be predicted by
the Crabtree effect in yeast. Therefore, oxygen levels impact
colony patterning and invasive growth.
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Another class of genes induced during surface growth has
been described as regulated during desiccation. These in-
cluded the gene that encodes the hydrophilin Sip18p
(Miralles and Serrano 1995; Dang and Hincha 2011) (Figure
6A). A second hydrophilin, Grelp, (Garay-Arroyo and Cova-
rrubias 1999) was also among the top 10 induced targets
(Figure 6A). Four of six hydrophilins and putative hydrophi-
lins were induced during surface growth (Table S1, wild-type
liquid-solid). Hydrophilins such as Sip18p allow for survival
under desiccation stress and during the dehydration/rehy-
dration process (Rodriguez-Porrata et al. 2012). The induc-
tion of hydrophilin-encoding genes SIP18 and GREI during
surface growth was confirmed by qPCR analysis (Figure 6B).
By testing mutants from an ordered deletion collection (Ryan
et al. 2012), we found that the loss of either hydrophilin,
SIP18 or GRE1 (Figure S10A; grelA and sipl18A), increased
mat ruffling and hyper-invasive growth, indicating that in-
tracellular hydration may be a trigger for both invasive
growth and colony ruffling (Figure S10B; grelA and
sip18A). Therefore, cells in mats may experience desiccation
stress, and genes induced under this condition can impact
colony patterning.

Genes encoding the heat-shock proteins Hsp33p (fourth
most-induced target), Sno4p, Hsp26p, and Hsp12p were also
induced during mat growth. Additionally, as shown below, a
ruffled colony showed a temperature differential of 0.8° be-
tween its warmest and coolest regions (see Figure 7D, be-
low). Modest differences in temperature have previously
been shown to effect metabolism in S. cerevisiae (Jones and
Hough 1970). Spg4p, described as being essential for growth
at high temperature (Martinez et al. 2004), was also among
the top targets. Using an ordered deletion collection, we ex-
plored the roles of SNO4 and HSP26 (Bentley et al. 1992)
(Figure S10A; sno4A and hsp26A), as the hsp33A mutant did
netexist in the deletion collection. Deletion of either of these
genes resulted in smoother colonies.

None of the mutants tested were necessary for growth in
low-oxygen (5-15% O,), high-temperature (37°), or desic-
cated conditions (Figure S11). This may be a result of func-
tional redundancy among the major induced targets. Taken
together, oxygen, temperature, and desiccation stresses im-
pact colonial growth in yeast. Genes induced during surface
growth impact colony patterning that may aid in the response
to these stresses.

Flo11p-dependent adhesion protects cells in colonies
from a nematode predator

Flo11pis an established regulator of filamentous growth, and
its role in maintaining contacts between cells to form fila-
ments has obvious benefits during surface penetration (e.g.,
invasive growth) into new environments. However, the
broader functional implications of Flo11p-dependent adhe-
sion between cells on the colony surface are not clear. The
interactions among yeast cells mediated by a related floccu-
lin, Flo1p, can provide protection from toxins and antibiotics
(Smukalla et al. 2008), and cell adhesion has more generally
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(C) Selected images from videos showing WT C. elegans entering WT or flo71A yeast colonies. A set of representative videos are available in the
supplement (Videos S8-S15). (D) Dot plot showing the time required for worms to enter the indicated colonies. WT (N2) or gir-1(lof) C. elegans worms
were placed on plates containing WT or flo71A yeast, or the E. coli food strain OP50. (E) Stacked bar graphs comparing C. elegans forward movement to
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been postulated to provide protection to individual cells of a
colony (Granek and Magwene 2010). In bacterial communi-
ties, the growth of cells in mats can deter predation by other
microbes and multicellular predators, like nematodes (Darby
et al. 2002). To explore whether cell adhesion contacts might
similarly protect fungal cells from predation, we developed a
mock predator—prey assay between S. cerevisiae and the nem-
atode C. elegans.

C. elegans is a free-living nematode that is commonly used
in research laboratories (Brenner 1974), and has been used
to study the effects of C. albicans and S. cerevisiae accumula-
tion in the gut (Jain et al. 2009; Bois et al. 2013). C. elegans
feed on bacteria and other microbes including yeasts (Félix
and Braendle 2010). The pharynx, a neuromuscular pump,
contracts and relaxes rhythmically to draw in liquid and sus-
pended particles to grind them up before transporting them
to the intestine. Although the pharynx pumps continuously,
previous studies have shown that microbe size is a determin-
ing factor in C. elegans feeding; large food is often excluded
during this grazing behavior (Avery and Shtonda 2003;
Shtonda and Avery 2006; Fang-Yen et al. 2009). One function
of cell adhesion molecules is to allow cells to adhere to each
other, leading to large colonies. To observe the impact of such
adhesion, wild-type S. cerevisiae cells were grown in condi-
tions that either permit cell-cell adherence (Figure 7A, ¥PD)
or suppress adherence (Figure 7A, synthetic). C. elegans were
transferred into suspensions of S. cerevisiae as per established
methods (Bois et al. 2013). We found that less-adherent S.
cerevisiae (Figure 74, synthetic) were taken into the pharynx
of C. elegans in greater numbers than S. cerevisiae that ad-
hered to each other (Figure 74, ¥PB). This finding is consis-
tent with the idea that cell-cell adhesion protects cells from
ingestion by C. elegans.

We next assessed how yeast cells growing in adhesive
colonies might impact the feeding behavior of C. elegans.
To test this possibility, the time required for worms to pene-
trate yeast colonies from nose to tail was measured for <
100 sec (Figure 7, C and D and Videos S8-S15). Worm stall-
ing and reversing out of the colony was also examined (Fig-
ure 7E). After 3 days of colony growth, a wild-type yeast
strain that formed normal, ruffled colonies slowed C. elegans
as it attempted to penetrate the colony (Figure 7, C-E, and
Videos S8 and S9). In some cases, worms abandoned enter-
ing the colony entirely. In contrast, a flol1A colony, which
fails to form ruffled colonies, did not deter worms from en-
tering (Figure 7, C-E, and Videos S10 and S11). floI 1A col-
onies were equally vulnerable to nematode entry as a colony
of OP50, an E. coli laboratory food strain for C. elegans
(Brenner 1974) (Figure 7, D and E, and Videos S12 and
S13). Additionally, C. elegans transferred directly into
flo11A S. cerevisiae colonies ingested more cells than C. ele-

gans transferred into wild-type S. cerevisiae colonies (Figure
7, F and G). It is important to note here that our results out-
line an association between a lack of physical barrier and a
higher rate of being consumed by C. elegans. As such, we
expect any mutant that lacks the physical barrier conferred
by adhesive colonies would be similarly vulnerable.

C. elegans might be excluded from wild-type colonies due
to the physical barrier encountered by wild-type colonies
expressing FLO11. Additionally, exclusion might also result
from a change in a worm’s sensory response to the colony
surface. Wild-type C. elegans halt their forward locomotion
and initiate backward movement in response to a light touch
to their anterior-most tip (nose). This avoidance of touch to
the worm’s nose has been termed the nose-touch response

(Kaplan and Horvitz 1993), a behavior involving the ASH

polymodal nociceptive sensory neurons (with a small contri-
bution from the FLP and OLQ sensory neurons) (Kaplan and
Horvitz 1993). The glutamate-gated ion channel GLR-1 func-
tions in the downstream command interneurons and is re-
quired for the nose-touch response (Hart et al. 1995; Maricq
et al. 1995). To test the possibility that C. elegans do not
effectively enter yeast colonies due to the activation of this
mechanosensory avoidance response, experiments were per-
formed with C. elegans glr-1(n2461) loss-of-function (lof)
mutant animals, which are defective for nose touch, exposed
to a wild-type yeast colony. The glr-1(lof) mutant animals
penetrated colonies faster than wild-type worms, though this
was still slower than wild-type worms penetrating flo11A
yeast colonies (Figure 7D, and Videos S14 and S15). In ad-
dition, the glr-1(lof) mutant animals had fewer stalls and
reversals upon initial colony entry than wild-type C. elegans
(Figure 7E). Taken together, our data reveal a clear associa-
tion between the formation of adhesive contacts between
yeast cells in surface-growing colonies and predation in a
laboratory setting, both by becoming too large to eat and also
by forming a physical barrier. Further experiments are
needed to establish if protection against macroscopic preda-
tors is actually an evolutionary driving force for this

phenotype.

Flo11p-dependent ruffles impact colonial
heat dissipation

Colony ruffling increases the surface-to-volume ratio and may
provide benefits such as efficient thermoregulation, or other
such adaptations to the environment (Palkova and Vachova
2006). We also observed that heat-shock response proteins
were among the most induced surface-growth targets (Figure
6A, HSP33 and SNO4). To test whether ruffles made by
Flo11p-dependent adhesion impact the temperatures of col-
onies, ruffled wild-type colonies and smooth flo11A colonies
were examined by infrared imaging (Figure 8A). Thermal

borne GFP (PC2560). C. elegans transferred into the colony for 45 min before mounting. Merged fluorescent images of head and tail regions of C.
elegans showing fluorescent S. cerevisiae inside the animal (merged). Fluorescent images of individual S. cerevisiae inside the animal (inset = GFP). (G)
Bar graph showing difference in average number of S. cerevisiae cells in the C. elegans pharynx between WT and flo77A colonies. Error bars are SE.

* P < 0.05. WT, wild-type; YEPD, yeast extract, peptone, and dextrose.
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imaging showed that the average temperature of a ruffled
colony was 0.31° Cooler than the average temperature of a
smooth colony (Figure 8B, black bars, P < 0.05, n = 6). The
average coolest region of a ruffled colony was 0.33° Gooler
than the average coolest region of a smooth colony (Figure
8B, white bars, P < 0.05, n = 6). Additionally, the coolest
regions of the ruffled colonies (Figure 8C, <30°) were the
ruffles themselves (Figure 8C, merged). In a study of cell wall
stresses, flol11A cells were also shown to have modest tem-
perature sensitivity at 37° (Chow et al. 2018). In summary,
Flol1p-dependent ruffling might aid thermoregulation in
yeast colonies.

Discussion

Here, we explored the role of signaling pathways that regulate
filamentous growth in mediating adhesion-based surface re-
sponses, including mat formation and colony patterning.
Fungal cells commonly grow on surfaces, which poses unique
challenges due to the heterogeneity of the nutrients within
different parts of the colony and direct exposure to environ-
mental conditions. Understanding the responses to growth on
surfaces is important because fungal pathogens exhibit mat
growth and form invasive filaments (e.g., hyphae) on the
surface of the host, and on inert surfaces; during early steps
in host colonization.

Analysis of signaling pathways that coregulate
adhesion-dependent surface responses

Intracellular signaling pathways can operate in functionally
interconnected networks (Levchenko 2003). How multiple
pathways operate in a coordinated manner to achieve mor-
phogenetic responses with high fidelity remains a mystery. By
examining the major signaling pathways that regulate fila-
mentous growth in yeast, we have identified new roles for the
filamentation network in regulating colony patterning and
mat growth. Thus, the filamentation regulatory pathways
may have a general function in regulating the growth of cells
in surface communities.

We also have identified the chromatin remodeling com-
plex, SAGA, to be a regulator of filamentous growth. SAGA
and the previously characterized Rpd3p pathway (Bernstein
et al. 2000; Chavel et al. 2010) are involved in the epigenetic
modification of chromatin. SAGA is an evolutionarily con-
served chromatin remodeling complex and a member of the
histone acetyltransferase family of proteins (Wang and Dent
2014). SAGAs functions are diverse bug include changes in
transcription that result in cell differentiation (Wang and
Dent 2014; Hirsch et al. 2015). In yeast, SAGA controls the
expression of a specific set of growth-promoting genes
(Bruzzone et al. 2018). In fission yeast, TORC1 and TORC2
converge to regulate SAGA in response to nutrient availabil-
ity (Laboucarié et al. 2017). Moreover, components of SAGA
have recently been shown to impact the virulence of
Fusarium (Gao et al. 2014).

Expression profiling was performed to evaluate the roles
for a subset of pathways that regulate adhesion-dependent
surface growth. We identified an unexpectedly large number
of differentially expressed genes. Many of the genes were
regulated by a single pathway. However, as might be expected
of a dense network of functionally connected pathways, each
pathway impacted every other pathway by regulating over-
lapping targets as well as genes encoding pathway compo-
nents. A key example of this overlap, even in the expanded set
of pathways, was the gene encoding the adhesion molecule
Flo11p. This may be expected given the critical roles that
Flo11p plays in regulating filamentous growth (Rupp et al.
1999), mat formation (Reynolds and Fink 2001), and colo-
nial patterning (Granek and Magwene 2010). Moreover, the
FLO11 gene is a hub where many signaling pathways and
transcription factors converge (Rupp et al. 1999). The other
gene was PGUI, which encodes a secreted plant cell wall-
degrading enzyme. Given that one surface that budding yeast
commonly encounter is the surface of plants, especially rot-
ting fruit, it may not be surprising that yeast induce this gene
when undergoing surface growth. Transcriptional induction
of the PGU1 gene may also result from the growth of cells on
agar, which is a potential substrate, and may be indepen-
dently regulated. Therefore, one function of the filamenta-
tion regulatory network may be to coordinately regulate
target genes that are needed to respond to the challenges
of growing on surfaces.

We fartheruncovered new connections between signaling
pathways that regulate adhesion-dependent surface growth.
One connection was between the RAS and RTG pathways,
which coregulated a substantial number of target genes. The
coregulated targets support a function for the RAS pathway in
mitochondrial control. The RAS pathway is a global nutrient-
sensing pathway in yeast and other organisms (Zaman et al.
2008). The fact that RAS coregulates targets of the RTG
pathway supports the idea that RAS plays a critical role in
the response to mitochondrial stress. Our results are consis-
tent with previous observations that connect RAS to the over-
all regulation of the mitochondria. RAS is required for growth
on nonfermentable carbon sources, mitochondrial enzyme
content (Dejean et al. 2002), and citrate synthase activity
(Swiegers et al. 2006; Chavel et al. 2014). Interestingly, com-
ponents of the RAS pathway, including the GTPase activating
protein Iralp and adenylate cyclase Cyrlp, associate with
mitochondrial membranes, which might impact RAS path-
way function or activity at this site (Belotti et al. 2012). More-
over, RAS has been implicated in working with RTG to
promote longevity in yeast (Kirchman et al. 1999). Thus,
the functional interaction between the two pathways to reg-
ulate aspects of mitochondrial health might impact the cell’s
overall life span. Further experiments will be required to de-
termine how the RAS and RTG pathways coordinate the re-
sponse to mitochondrial problems. Though the nature of this
relationship is unclear, subsequent studies may better char-
acterize the mechanism by which each pathway regulates the
other’s hallmark targets.
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Figure 8 Effect of cell-cell adhesion on thermoregulation. (A) Visible and infrared images of WT and flo77A colonies. Colonies were incubated at 30°
and removed from the incubator. The image was taken at < 30 sec after removal of lid. Scale temperature in degrees Celsius. (B) Difference in average
and coolest recorded temperatures between WT and flo77A. * P < 0.05, n = 6. (C) Visible light (Light) and thermal images of cool colony regions
(< 30°) of the WT colony from (A). “Merged” shows the overlapping of cool regions with colony ruffles. WT, wild-type.

We also show that Dig1p and Ste12p, which are commonly
thought to reciprocally regulate the same set of target genes,
actually regulated a partially nonoverlapping set of targets.
One that stood out in the Dig1p-regulated set were genes that
play a role in zinc uptake and metabolism. This observation is
consistent with a previous set of findings that show unique
expression profiles and binding sites for this activator-repres-
sor pair (Breitkreutz et al. 2003; Zeitlinger et al. 2003).

Yeast respond to surface growth by expressing a subset
of stress-response genes

We also explored the hypothesis that the activity of signaling
pathways may change in different parts of a colony over time.
We found this to be the case: the activity of the fMAPK pathway
was different in different parts of the colony and in different
aged colonies. This finding has broad implications in under-
standing how target genes might be induced during surface
growth. For example, it might be expected that other time
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points or harvesting from certain regions of the colony might
result in different expression profiles. The comparative RNA-
seq analysis performed here may be an oversimplification of
the actual gene expression changes that occur within a colony,
which may vary in different parts of a colony and over time.

In the study, we also examined genes that were differen-
tially expressed during surface growth as compared to growth
in liquid culture. The genes that were differentially expressed
tell us about the challenges of growing in the unique envi-
ronment of surface growth. Several of the differentially
expressed genes identified fit with what one expects cells to
encounter when growing on surfaces. One might expect that
cells experience anaerobic stress within colonies compared to
when growing in liquid conditions, where they are uniformly
aerated by shaking. Likewise, cells in colony exteriors would
be expected to be vulnerable to desiccation. Interestingly, we
show that colony growth patterns change in response to these
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stresses. Specifically, differentially regulated genes impact
colony patterning in response to stress.

One prominent class of differentially expressed genes
regulates the heat-shock response. This discovery was at first
perplexing, given that cells were grown in liquid and on plates
at the same temperature. However, thermal imaging verified
that colonies do not have a uniform temperature. This may
result from the generation of heat due to metabolic activities of
cells within the colony, which may lead to temperature dif-
ferences in different parts of the colony. We also show that
ruffles dissipate heat more efficiently than other parts of the
colony. The increased surface area of ruffles may promote heat
dissipation. Therefore, anether function of colony pattern
formation might be to efficiently dissipate heat that results
from cellular metabolic activities.

Adhesive contacts between yeast cells may offer
protection from macroscopic predators

Yeast and other microbes produce colonies that have a ruffled
appearance due to contacts between cells. One established
reason for cooperation among individuals in microbial pop-
ulations is protection (West et al. 2007). For example, cells in
the exterior of flocs protect cells in the interior from toxins
and antibiotics (Smukalla et al. 2008). Microbial cells are also
subject to predation by macroscopic predators. Macroscopic
predators, like nematodes, graze on microbial communities.
Predator-prey interactions have been studied in bacterial
populations, which have developed diverse strategies to
evade macroscopic predators. Depending on the species, bac-
teria have been shown to evade predators by the formation of
mats (Darby et al. 2002; DePas et al. 2014; Nandi et al. 2016),
by the secretion of proteases (Vaitkevicius et al. 2006) and
exopolysaccharides that interfere with the predator’s re-
sponses (Begun et al. 2007), and by phase variation, in which
bacterial cells express different classes of cell surface proteins
to evade detection (Dahl et al. 2011).

Although predator—prey studies are less-well character-
ized in fungal species, yeast and other fungal microorganisms
have ecologically relevant interactions with animals in the
wild, including grazing by wasps (Stefanini et al. 2016), flies
(Fischer et al. 2017), and other invertebrates. Using two well-
characterized laboratory genetic models, we provide evi-
dence that adhesive contacts between yeast cells may deter
efficient predation by nematodes. While individual cells in
suspension were vulnerable to being ingested, cells that ad-
hered to each other and formed clumps were too large to be
eaten. Once cells settled out of suspension and grew into a
colony, adhesive colonies formed a physical barrier to deter
penetration by worms and also trigger the “nose-touch”
mechanosensory behavioral avoidance response. Although
the predator—prey model set up in the laboratory may or
may not reflect a true ecological relationship between the
two species, experiments using model organisms can provide
insights into encounters that may occur in the wild. Our data
provide an empirical framework to test the hypothesis that

the physical interaction among yeast cells in communities can
protect individuals from macroscopic predation in the wild.

In conclusion, we have explored the roles of filamentous
growth regulatory pathways in regulating multiple adhesion-
dependent surface responses in yeast. Dissection of the reg-
ulatory pathways by comparative RNA-seq and mutant phe-
notype analysis revealed new components and targets, which
emphasize the common and unique roles that pathways play
in coordinately regulating colonial surface responses in this
organism. Stress-responsive genes that respond to challenges
associated with surface growth were also characterized. The
signaling components, target genes, and stress-responsive
genes identified here might be common among other fungi,
including pathogens. Our results may extend-speeifieally; to
early steps in fungal virulence, where cells must attach to and
penetrate surfaces to colonize the host.
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